Particle Swarm Optimised polynomial neural network for classification: a multi-objective view

نویسندگان

  • Satchidananda Dehuri
  • Ashish Ghosh
  • Sung-Bae Cho
چکیده

Classification using a Polynomial Neural Network (PNN) can be considered as a multi-objective problem rather than as a single objective one. Measures like predictive accuracy and architectural complexity used for evaluating PNN based classification can be thought of as two different conflicting objectives. Using these two metrics as the objectives of classification problem, this paper uses a Pareto based Particle Swarm Optimisation (PPSO) technique to find out a set of non-dominated solutions with less complex architecture and high predictive accuracy. The proposed method is used to train PNN through simultaneous optimisation of topological structure and weights. An extensive experimental study has been carried out to illustrate the importance and effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-criterion Pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art

In this paper, we proposed a multi-objective Pareto based particle swarm optimization (MOPPSO) to minimize the architectural complexity and maximize the classification accuracy of a polynomial neural network (PNN). To support this, we provide an extensive review of the literature on multi-objective particle swarm optimization and PNN. Classification using PNN can be considered as a multi-object...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

Multi-Objective Optimization of Centrifugal Pumps Using Particle Swarm Optimization Method

In the present study, multi-objective optimization of centrifugal pumps is performed at three steps. At the first step, η and NPSHr in a set of centrifugal pump are numerically investigated using commercial software. Two meta-models based on the evolved group method of data handling (GMDH) type neural networks are obtained, at the second step, for modeling of η and NPSHr with respect to geometr...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJIDSS

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008